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Glassy Mean-Field Dynamics of the Backgammon 
Model 
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In this paper we present an exact study of the relaxation dynamics of the back- 
gammon model. This is a model of a gas of particles in a discrete space which 
presents glassy phenomena as a result of entropr barriers in configuration space. 
The model is simple enough to allow Ibr a complete analytical treatment of 
the dynamics in infinite dimensions. We first derive a closed equation describing 
the evolution of the occupation number probabilities, then we generalize the 
analysis to the study the autocorrelation function. We also consider possible 
variants of the model which allow us to study the effect of energy barriers. 
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1. I N T R O D U C T I O N  

The nature  of the glass t ransi t ion is still poorly unders tood/1,  2) Under  slow 

cooling, real glasses reach a metastable  phase of free energy larger than 
that of the crystal phase. Glasses show a strong stowing down of the 
dynamics  when the temperature  is lowered and the t ranspor t  coefficients 

increase by several orders of magni tude  in a nar row range of temperatures.  
It is na tura l  to th ink that the appearance  of high free-energy barriers is the 

mechanism responsible for the glass transit ion.  But flee-energy barriers are 
composed of energy barriers and entropy barriers. The quest ion of the 

relevance of both  kinds of barriers in real glasses is of the utmost  impor-  
tance. Activated jumps  of energy barriers are strongly dependent  on 
temperature.  The typical time r to overcome an energy barrier zJE is 
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r ~ exp AE/T,  where T is the temperature. This typical time diverges when 
the temperature T goes to zero. Conversely, relaxation times related to 
entropy barriers are not activated by the temperature. 

The simplest way to visualize entropy barriers is the following. Con- 
sider a dynamics in which at each time step the system can reach a new 
state with uniform probability; the typical time to decrease the energy of 
one unit is r ~ f 2 J g 2 f = e x p ( A S ) ,  where A S  is the height of the entropy 
barrier, g?~ stands for the initial available volume of phase space, and g?r 
stands for the final volume of phase space with lower energy. 

If the effects of energy and entropy barriers are combined, one expects 
that entropy barriers should affect the temperature-activated relaxation 
time in its prefactor r ~ (s163 exp AE/T.  According to that, the relaxation 
time can diverge if the phase space volume of lower energy configurations 
in the system shrinks to zero during the dynamical evolution. The idea that 
an entropy crisis could be relevant to the glassy transition is very old  13"4~ 

and it has had interesting developments in recent times ~5'6~ in the 
framework of mean-field theory of disordered systems. From the 
experimental side, colloidal systems with hard-core interactions ~v~ furnish 
an example of glassy transitions completely driven by entropy. 

In the theoretical models studied in refs. 5 and 6 it is very difficult to 
disentangle entropic effects from energetic ones. To this aim a simple 
dynamical model (the backgammon, BG, model) was recently proposed by 
one of us ~9~ (hereafter referred to as I), in which energy barriers are com- 
pletely absent (a diffusive model with entropy barriers has also been con- 
sidered in ref. 11 ). While the model has no pretensions to describe realisti- 
cally any concrete system undergoing the glassy transition, it shows a slow 
dynamics with strong hysteresis effects and Arrhenius behavior of the 
relaxation time ~9~ and it is simple enough to allow for a complete under- 
standing of the mechanisms leading to that behavior. The off-equilibrium 
dynamics of this model was studied subsequently by us ~t~ (hereafter 
referred as II), using an adiabatic approximation, obtaining fairly good 
results concerning the relaxation of the energy. The same approximation 
has been recently rederived, and slightly refined, in a paper by Bouchaud 
et al. ~ ~2~ 

In this paper we derive the exact mean-field equation for the order 
parameter for the dynamics of the BG model, which turns out to be the energy 
itself. The techniques we use are similar to these of; c ~2~ however, the equations 
we get were not discussed there. We find that the energy satisfies a causal 
functional equation with memory. This is at variance with the approximate 
treatments where the evolution is described by a Markovian equation. 

In its original formulation ~ the model does not have energy barriers. 
However, in real systems energy barriers are present. The BG model is 
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flexible enough to allow for the introduction (and the tuning) of energy 
barriers. This is done by simple modifications of the Hamiltonian of the 
system. The formalism developed for the original model applies in these cases. 

In Section 2 we define the Hamiltonian of the BG model and the Monte 
Carlo dynamics we have used to study it. In Section 3 we present some exact 
results for the behavior of one-time quantities (for instance, the energy) and 
for two-time quantities such as the correlation function. Section 4 is devoted 
to the study of the effect of energy barriers in the BG model. Finally, we pre- 
sent our conclusions and a discussion of our results in Section 5. 

2. THE BG MODEL AND THE D Y N A M I C S  

Let us take N distinguishable particles which can occupy M different 
states and let us denote by p = N/M the density, i.e., the number of par- 
ticles per state. The BG Hamiltonian is defined by 

M 

H =  - ~ ~,,,,o 
r = |  

(1) 

where n,. is the occupation level of the state r = 1 ..... M, i.e., the number of par- 
ticles which occupy that state. The numbers 17,. satisfy the global constraint 

M 

n,. = N (2) 
r ~ ]  

Equation (1) shows that energy is simply given by the number of 
empty states (with negative sign), we define the occupation probabilities 

1 M 
P k = ~ , ~ . =  (6,,r.k) (3) 

which is the probability of finding one state occupied by k particles. The 
statics of this model in the canonical ensemble can be easily solved (see I 
and II). In particular, one gets the result 

Zk --' exp(flfik, o) 
Pk = P  (4) 

k! exp(z) 

where z is the fugacity and fl is the inverse of the temperature T and they 
are related by the condition 

p(e/~- 1)= (z--p) e: (51 

expressing that the density is fixed to p. 



134 Franz and Ritort 

The probabilities Pk satisfy the relation Z~= o Pk = 1 and they yield all 
the static observables, in particular, the energy U =  - P o .  Several dynami- 
cal rules, thermalizing to the Boltzmann distribution, can be attached to 
the model. The simplest choice (see I) is the Metropolis single-particle 
dynamics, in which at each sweep a particle is chosen at random and a 
move is proposed to a new state. The move is accepted with probability 
one if the energy does not increase and with probability e x p ( - f l )  
otherwise. 

In the mean-field version of the model, the possible arrival states of the 
particles are chosen at random with uniform probability in all the space. 
This random motion of the particles allows a complete analytical treatment 
of the problem. 4 Finite-dimensional models, where at each sweep the par- 
ticles are only allowed to move to neighbors on a lattice, are currently 
under studyJ 8~ 

The model has no energy barriers. Consequently there is no frustration 
(in the usual sense) and no metastable states. However, it was shown in I 
that the dynamics is highly nontrivial and a dramatic slowing down occurs 
at low temperatures. This can be qualitatively understood as follows. Sup- 
pose the system is at zero temperature and the dynamics starts from a ran- 
dom initial configuration of high energy. As the system evolves toward the 
equilibrium more and more states are progressively emptied and the energy 
decreases. Because the average number  of particles per occupied state 
increases with time (the total number of particles is conserved), the time 
needed to empty one more state also increases. The result is that the energy 
goes extremely slowly to its equilibrium value. 

The dynamical quantities in which we are interested are the time- 
dependent occupation number probabilities 

1 M 

P k ( l ) = ~ r Z =  (CS,mt~.k) (6) 

[ E(t) = -- Po(t) ] and the two-time energy-energy correlation function,~9~ 

(1 /M)  Y~r 6,,rl,I. o 6,,,I.,'~. o -- E(t)  E(s) 
Ce(t ,  s) = 

- E ( s ) [  1 + E(s)]  

P(n,.(t) = 0, n,.(s) = O) - Po(t) Po(s) 
= t>~s (7) 

Po(s)[ 1 - Po(s)] 

At finite temperature, when t, S~teq ~exp(fl)/f l '-  (see II and also below, 
Section 3.2) this function is time-translationally invariant. In the regime in 

4 The interesting case of a sequential dynamics is more complicated. 
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which both times t, s are much less than teq, and at all times at zero tem- 
perature, the system is off-equilibrium, time-translation invariance does not 
hold, and the correlation function displays aging, c9~ 

3. M E A N - F I E L D  EQUATIONS FOR THE D Y N A M I C S  OF 
THE BG MODEL 

In this section we derive exact mean-field equations for the Monte 
Carlo dynamics of the BG model. First we address the dynamical problem 
associated with the one-time probability distributions Pk(t). These prob- 
abilities generate an infinite hierarchy of Markovian equations which can 
be closed in terms of the only quantity Po(t). Then we will study the two- 
time correlation functions in a similar way. For simplicity, we will restrict 
all the future computations to the case p = 1 (i.e., M = N), the generaliza- 
tion to an arbitrary density being very simple. 

3.1. Dynamical  Equations for Pk(t) 

The purpose of this section is to write the dynamical evolution equa- 
tions for the probabilities Pk(t) and, in particular, for the internal energy 
E ( t ) = - P o ( t ) .  An elementary Monte Carlo move consists in a random 
selection of one particle (hence, the probability to select a particular depar- 
ture state d is rid~N, where n d is the occupation level of that state) and 
moving it to a randomly selected arrival state a with uniform probability 
independent of the occupation level n,. One Monte Carlo step (our unit of 
time) consists of N elementary moves. In an elementary move there are 
several processes which contribute to the variation Pk(t). In Appendix A 
we write explicitly the balance equations; the result is 

dPk( t ) 
= ( k +  1 ) ( P k + l - - P k ) + P k - - I  

dt 

+Po(e- /~- - l ) (Jk . l - -Jk .o- -kPk+(k+l)Pk+l)  (8) 

where the time index for the probabilities Pk has been omitted. This equa- 
tion holds for k >~ 0 with P _ 1 =  0. In particular, for k = 0 we obtain the 
equation studied in II, 

OPo 
= Pl( 1 -- Po) -- e-/~Po( 1 -- Pl)  (9) 

Ot 
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The hierarchy was closed in II assuming fast relaxation on the surfaces of 
constant energy, and slow variation of the energy itself. Under this condi- 
tion, Eq. (9) was solved assuming 

z( t ) k -  I 
Pk( t )  = exp[fl(t) 6k. o-- z(t)] k! 

with fl(t) and z( t )  related at all times by Eq. (5). 
Here we study the hierarchy (9) with the method of the generating 

function, which we define as 

G(x, t ) =  ~ xkPk( t )  (10) 
k=0 

A similar approach was also used in ref. 12, where the adiabatic 
approximation of II was rederived and improved. 5 

From Eq. (8) it is easy to check that the G(x,  t) satisfies the partial dif- 
ferential equation 

OG(x, ] O G ( x ' t ) = ( x - 1 )  G ( x , t ) + 2 ( t ) - ( l + 2 ( t ) )  (11) 
t) 

Ot Ox 

with 2( t )=  Po(t)(e  - / j -  1). Equation (I 1) is a nonlinear partial differential 
equation; the nonlinearity is contained in the dependence of 2 on 
Po(t) = G(O, t). 

The equilibrium solution Geq(X ) is easily obtained from Eqs. (4) 
and (10), 

e Ij - 1 + e-'" 
(12) Goq(x) - ze ~ 

and one can check that this is consistent with Eq. (11). 
The previous partial differential equation can be implicitly solved to 

get G(x, t) as a functional of 2. The details are presented in Appendix B; we 
give here the result: 

G(x,  t) = e c ' -  i i ol,. OlGo ( 1 + (x  - 1 ) B( t, 0)) 

+ ( x - l )  ds2( s )  B ( t , s ) e  ~x- l ID" ' ' l  (13) 

s The technique of the generating function in the study of the dynamics has also been applied 
to some mean-field spin-glass models?~3~ 
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where we have written 

(f' ) B(t ,s)=exp - dv[ l+2(v ) ]  
s 

;' D(t,s)= dv B(t, v) 
s 

(14) 

and Go(x)=G(x, O) is the initial condition at time t=O. Setting x = O  in 
(13), we get a closed equation for Po(t): 

Po( t )=e-Dl"~  -p) dsPo(s) B(t ,s)e D(''~'I (15) 

The previous equation, although strongly non-Markovian, is causal as 
the 1.h.s. depends on the values of Po(s) for s ~< t. It has a unique solution 
that can be found numerically with good precision, discretizing the time 
and integrating it step by step. The evaluation of the previous expressions 
gives the full solution of the BG model as far as the one-time dynamical 
quantities are concerned. 

The solution of (13) is explicit at infinite temperature (fl = 0). In this 
case 2( t )=  0 and the solution of G(x, t) simplifies, 

G(x, t)=eCl-"-')("-])Go( (X - 1 ) e - ' +  1) (16) 

It is not surprising that at infinite temperature the system goes exponen- 
tially fast to equilibrium (with relaxation time equal to 1). At infinite tem- 
perature the equilibrium probabilities (4) are given by P k =  1/(k! e), the 
energy being E = - P o  = -1 /e .  If we start from the initial condition in 
which all particles occupy the same state (Po = 1, P k = 0 ,  k > 0 ) ,  then we 
have Go(x) = 1. From Eq (16) we obtain the time evolution of the energy, 

E(t) = -G(O, t )=  - e  e-'-I (17) 

We studied numerically the solution of (15) at T=0 .  Fig. 1 displays 
the result for the energy, starting from the initial condition Pk(0)= 1/(ek!) 
at time 0 [i.e., Go(x)=e"-~]. For comparison we plot the results of the 
Monte Carlo simulations and of the adiabatic hypothesis of II with the 
same initial condition. 6 

6 The adiabatic hypothesis gives better results if the integration is started at later times. 

822/85/I-2-I0 
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Fig. 1. The decay of the energy at zero temperature starting from a completely random con- 
figuration at time t = 0 .  We compare the numerical solution of  (15) (upper  curve)  with the 
Monte Carlo simulations for N = 10 5 and the integration of the adiabatic equation of II with 
the same initial condition ( lower  curve).  

3.2. The Correlation Function CE(t, S) 

In this section we investigate the behavior of the energy-energy 
correlation functions (7). We proceed in a similar way as for the occupa- 
tion probabilities. We need to study the joint occupation probability in a 
given site r at two different times t, s(t > s ) ,  

P(nr(t)  = 0, n r ( s )  = 0 )  = P(nr(t)  = 0 l n r ( s )  = 0 )  Po(s) 

The correlation function (7) can be written as 

P(n~(t)  = 0 [ n,,(s) = 0) - Po(t)  
CE(t, s) -- (18) 

1 --  Po(s)  

a set of  equations that allow us to study P ( n r ( t ) =  We now write 
01 n,.(s)= 0). 
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Let us define the probabilities 

Vk(t, S) = P(n,.(t) = k I n,.(s) = 0) (19) 

i.e., the occupation number probabilities in the set S,. of states which are 
empty at time s. In general, it is possible to restrict the balance equations 
that led to (8) to any subset S of the whole space. Irrespective of S, the 
result is 

01~k = 
8t V k - ' - - V k + [ ( k + l ) v k + l - - k v k ] [ 1 - - P ~  

- ( ~ S k .  I - -  6 k .  0)[  VO( 1 - -  P , )  + v, P o ] (  1 - e - /J )  (20) 

In particular, if the set S is the whole space, v k = P k  and we get back 
to (8). 

Of course the initial conditions depend on the set under study. For  the 
set S,. in which we are interested we must choose 

Vk(S, S) = 6k, 0 (21) 

In terms of the generating function 

F(x ,  t, s) = ~ xkVk(t, S) (22) 
k = O  

Eq. (20) reads 

D =  8F OF ( x _  l ) [ F _ ( l  _ P o ( l _ e _ l ~ ) ) _ ~ x _ ( V o ( l _ p ] ) +  v i P o ) ( l _ e _ p )  ] 
Ot 

with condition at time s 

F~.(x) - F(x ,  s, s) = 1 

(23) 

Note that if we suppose the Pk(t) are known, then Eqs. (20) and (23) are 
linear. Obviously, if one considers the set ff~. complementary to S~. and its 
respective generating function F, the following holds: 

Po(s) F(x,  t, s) + ( 1 - Po(s) ) F(x, t, s) = G(x, t, s) 

(24) 
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/t(t, s ) =  [ Vo(t, s)(1 - P l ( t ) )  + vt(t, s) Po(t)](1 - e  -p) 

B(t ,s)=exp - dv[1-Po( t ) (1 -e - / J ) ]  (25) 

f 
! 

D(t,s)= dvB(t,v) 

we find 

f 
! 

F(x , t , s )=e~"-I~~ dull(u,s) B(t ,u)e I'-l~D~''''~ (26) 

which depends implicitly on Vo and v~. In order to find a closed system we 
have to consider Eq. (26) and its x derivative in x = 0 ,  

f 
t 

Vo(t ,s)=l+ du[ - vo (u , s ) [1 - (1 -P l (u ) ) ( l - e - t~ ) ]+Vl (U ,S ) ]  

I' vl(t, s) = du[it(u,s)B(t ,u)e-~176 
x 

(27) 

The system (27), if one assumes the probabilities Pk(t) known, consists 
of a vectorial linear Volterra equation of second kind for Vo and v I which 
can in all generality be integrated numerically, and in some particular cases 
also analytically. 

The simplest case is equilibrium at finite temperature. In that case, 
P k -  P~-q and the various functions appearing in (27) are time-translation 
invariant. Under these conditions, Eq. (27) can be solved in Laplace trans- 
form. Simple algebra and the formula (see, e.g., ref. 14) 

Io ~ dt exp[ - a  e x p ( - t )  - Et] = a - ey(E, a) (28) 

(y is the incomplete gamma function) shows that v(E), the Laplace trans- 
form of Vo(t-s), is given by 

A(E) + [(z - 1 )/z] [ 1 - EA(E)] 
vo(E) = (29) 

1 -  { ( z -  1 ) e : / [ ( z -  1) e--+ 1] + [ ( z -  1)/z]E} [ 1 - E A ( E ) ]  
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where we have expressed all the equilibrium quantities in terms of the 
fugacity z [see Eq. (5)],  E is the Laplace variable conjugated to time, and 

1 Io u-'E- le" du A( E) - e_.z._e_ i (30) 

vo(E), as it should, has a pole in E =  0 with residue Po corresponding to 
Vo(t) --* Po for large time. Poles on the real, negative E axis correspond to 
exponential relaxation modes. The largest relaxation tome is given by 
minus the inverse of the value of E in the pole closest to the origin. This 
can be obtained explicitly for large fl, where z ~-f l - log( l?)  is large, from 
the asymptotic expansion of E A ( E )  for small E 

E A ( E )  ~ e - =  + E (31) 

The result is simply Epole ~ - e - - -  and correspondingly rma x ~e--~e/J/fl, 
while C E ( t - - s ) o c e  -"- 'v~m~x.  This simple exponential behavior of the 
equilibrium correlation function at large times is at variance with the 
Kohlrausch form usually found in supercooled liquids. It is not clear to us 
what kind of modification of the model (if any) could reproduce that form. 

0.i 

0 . 0 1  , , , ,,,HI , , , ..... , . . . . . . . .  , . . . . . . . .  , . . . . . . . .  , ....... 

0.0001 0.001 0.01 0.i 1 i0 I00 
(t-tw) /tw 

Fig. 2. The correlation function at zero temperature as a function of ( t -  t,)/t,, for different 
t . .(t . .  = 10, 30, 100, 300). We take this as a good indication for t/t . ,  scaling at large times. 
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Fig. 3. The correlation function at zero temperature for t,.= l0 compared with the Monte 
Carlo data Ibr N= l05. 

In the off-equilibrium regime the integration of (27) can be performed 
numerically. In Fig. 2 we show the result of the integration for T =  0 for 
different values of s (i.e., different waiting times) compared to the Monte 
Carlo results. Although we did not try very sophisticated algorithms, with 
standard ones ~151 we were able to reach enough large times to see the 
scaling behavior CE(t, s)=f(( t--s) /s)  observed numerically in I. It would 
be interesting to see if Eq. (26) could be solved with the aid of some simple 
approximation as for the energy (see II and ref. 12). 

4. T H E  EFFECT  OF E N E R G Y  B A R R I E R S  

The BG model has no energy barriers and hence there is no finite- 
temperature thermodynamic phase transition. In real glasses energy 
barriers are usually present and it can be instructive to understand their 
effect when combined with entropy barriers. One can easily modify the 
Hamiltonian (1) to include energy barriers. In this paper we have focused 
on two different ways. In the first, we have considered interaction between 
the different states, introducing an energy gain when groups of states are 
simultaneously empty. This interaction term is enough to cause a finite 
temperature thermodynamic transition, but metastability and frustration 
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are absent and the system monotonically reaches the ground state at zero 
temperature. In the other, we introduced metastable configurations in the 
dynamics. In this case the system fails to reach the ground state at zero 
temperature while thermodynamically there is no finite-temperature phase 
transition. 

4.1. The p - S t a t e  Model  

The simplest way we can introduce interaction among different states 
in the model is the following. Consider the quantity 

1 N 

Any Hamihonian of the form 

H= NF(M[ {n,.} ]) (33) 

with F gentle enough is a good candidate for a mean-field model. We did 
not try a systematic study of the form (33) for generic F, but we concen- 
trated on the class of monomials, where 

Hi,-- Nr_ l d,,r. o -- (34) 
r 1 

For p = 1 this model reduces to the BG model. For larger values of p 
there is interaction between different states. The ground state of this model 
is the same as that of the BG model (all particles occupying the same state) 
and there are no energy barriers at zero temperature. A careful study of the 
thermodynamics of this model shows that for any p > 1 there is a first-order 
phase transition from a completely disordered phase with M =  0 for T >  T,. 
to an 'ordered' phase with M ~ 0  for T <  T,.. This leads to the curious 
situation that the completely disordered state is dynamically stable at all 
temperatures but at T =  0. This can be understood by a simple argument. 
Suppose that we start the dynamics in a random initial condition and con- 
sider a sweep that leads to the filling of an empty state. The energy varia- 
tion in this process is 

" N p _ l P  ~,,~. o-- (35) 
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But according to our hypothesis Zr  ( ~ , , . 0 - l / e )  is a random variable of 
order x /~ ;  correspondingly, /~H~ N -~p- J~/'- and the acceptance rate is 

e -  IJ~Y ~ e -p I~" -  '~" (36) 

For  finite temperature and large N all the moves are accepted and the 
energy on average never decreases. In other words, the statistics of con- 
figurations is not changed by the dynamics. A crossover is found for 
f J ~ N  ~p-lv'-,  showing that the relevant scale of temperature for the 
dynamics is different from that of the statics. Right at zero temperature, 
where only the sign of the energy change and not the magnitude matters, 
the dynamics of the model coincides for any p with that of the conventional 
case p = 1. 

4.2. The Effect of Metastability 

The p-state model has no metastability at zero temperature. We want 
to study here a simple model where metastability is present but without 
interaction. In the BG model the ground state is reached by emptying 
progressively more and more states. To empty a given state at a certain 
time t it is necessary to pass to a configuration where a unique particle 
occupies that state. We then consider the following model, 

N 

H =  ~, ( - ~ , , , . o +  g6,,,.~ (37) 
r = l  

where g is positive constant and we have the usual constraint Eq. (2). At 
zero temperature the transition n r=  2---, n,.= 1 is forbidden; hence energy 
barriers are present in the model. More general models are obtained 
including in the Hamiltonian all possible terms of the type 6,,r. k, 

H = -  Z gkO,,,.k = -- Y'. g,,r (38) 
r = l  k = 0  r = l  

We focus here on the case (37). The statics of this model is easily 
solved. We obtain the free energy 

f l f  = log(z) - log(e-" + e/~ - 1 + z(e -Pg - 1 )) (39) 

and the fugacity is related to the temperature I/p by the g-independent 
relation (5). The equilibrium probabilities Pk [see Eq. (3)] are given by 

z k -  i exp(f l6k,  o -- fig 6k. 1) 
P k - -  k!(e= + e  - p g -  1) (40) 
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The dynamics of this model is expected to be substantially different 
from that of the BG model at least at very low temperatures. Concretely, 
at zero temperature the ground state is the same as for the BG case, but 
there is a large number of metastable states (for instance, half of the states 
empty and half of the states with two particles). It is easy to show that for 
each value of E between E = -  1/2 and the ground state E = -  1 there 
exists a metastable configuration with that energy. Then we expect the 
value of the energy extrapolated to infinite time to depend strongly on the 
initial configuration. In order to minimize the energy we have to maximize 
P0 and minimize P1. While the maximization of P0 is a process where 
entropy barriers are dominant (this is why the BG model defined as 
E = - - P o  is interesting), this is not the case for minimizing P1, where 
entropy barriers are absent. Then, independent of the initial configuration, 
we expect that P1 will go to zero exponentially fast for large times. In these 
conditions, we do not expect that the adiabatic solution of II can give a 
good approximation of the dynamics. This approximation was based on 
the fact that in the BG the surfaces of constant energy are connected a 
situation which does not hold here. 
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Fig. 4. Energy vs. time in a model with energy barriers (theory + Monte Carlo data at 
N =  105), starting from a random configuration at time zero. We observe exponential decay 
to E =  0.564. 
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However, the dynamics of this model can be directly solved as in the 
BG case. Skipping all the details, we find for the generating function 

OG(x, t) 8G(x,t)at ( x - l ) - [ l + X ( t ) ]  O ~  + [1 +2P2(e - & -  1)]G(x, t) 

+2(t)--2Pde-&--l)[e"--Po(x--1)(1-e-a~l+g~)]} (41) 

where 2(t)=Po(t)(e -p~+g~- 1). Observe that Eq. (41) depends only on 
the probabilities Po(t) and P2(t). The solution is more complicated than 
that of Eq. (13); however, it can be found. In Fig. 4 we show the result of 
the numerical integration of (41) for the energy at T =  0 compared with the 
Monte Carlo simulations, starting from a completely random initial condi- 
tion. The energy seems to converge to a value lim,~ ~. E( t )=  -0.564, a 
result that it would be interesting to derive analytically. The finite- 
temperature dynamics is under current study, where we expect the effects 
of the energy and entropy barriers to combine to give rise to a dynamics 
slower than that of the BG model. 

5. C O N C L U S I O N S  

In this paper we have derived the exact mean-field equations of the 
dynamics of the backgammon model. This has been achieved through the 
study of the single-site occupation number probability, for which a 
hierarchical set of equations hold. With the method of the generating func- 
tion, we have derived a closed functional equation for the energy. This, 
although non-Markovian, has a causal character and can be integrated 
step by step discretizing the time. The non-Markovian character of the 
evolution equation suggests that history-dependent effects should be 
observable in the system. However, the analysis of II, where the evolution 
of the energy was described by an approximate equation, shows that even 
for subtle phenomena such as hysteresis cycles in cooling-heating pro- 
cesses, history-dependent effects are very small. This should be reflected in 
the fact that the memory kernels that appear in the equation for the energy 
are short range in time. 

The method of the generating function also allowed us to derive a 
system of linear Volterra equations describing the evolution of the energy 
autocorrelation function. The numerical solution of these equation con- 
firmed the aging behavior found in I. It would be interesting to derive 
analytically the scaling C ~( t, t' ) = .If(t'/t). 



Glassy Mean-Field Dynamics of the Backgammon Model 147 

In the last section we derived the mean-field theory for a model where 
entropic and energetic barriers are combined. We saw that at temperature 
zero, starting from a random configuration, the system fails to find the 
ground state. We leave to future work the study of this model for finite 
temperature. 

Nonlinear equations with.memory appear in phenomenological glass 
theory under the name of mode coupling theoryJ ~ Mode coupling 
equations appear naturally in the mean-field treatment of the dynamics of 
disordered ~6'~v~ or quasi-disordered systemsJ ~8~ In the off-equilibrium 
situation they involve a set of coupled integral equations for the two- 
time autocorrelation function and its conjugated response function. The 
most striking manifestation of the importance of memory effects in off- 
equilibrium mode coupling theory is in the aging behavior of the response 
functionJ 16. 171 

Structural glasses are generally classified as strong glasses (Arrhenius 
behavior of the relaxation time) or fragile glasses (Vogel-Tamman-Fulcher  
behavior of the relaxation time). In this classification the BG model is 
a strong glass. Polymer glasses are fragile glasses which show strong 
aging effects in their physical propertiesJ z~ It would be desirable to know 
from experiments if there is a correlation between the fragility of glasses 
and their aging properties. This could shed light on the role of energy 
barriers in the mechanism of the glass transition. We believe that only 
entropy barriers cannot yield aging effects in the response function. In 
this framework a more detailed study of the BG model with metasta- 
bility (as presented in the last section) at finite temperature could be 
instructive, in particular, the study of the relaxation time as a function of 
the temperature and the existence of aging due to the presence of energy 
barriers. 

A P P E N D I X  A 

In this appendix we derive the evolution equation for the probability 
Pk(t) .  Define as Nk( t )  the number of states occupied by k particles 
( Pk( t ) = Nk( t ) /N).  

The processes leading to a variation of Nk can be classified as follows: 

�9 Process A + : arrival of a particle in a state with k -  1 particles. 

�9 Process  A -  : departure of a particle from a state with k particles. 

�9 Process B + : departure of a particle from a state with k + 1 particles. 

�9 Process B - :  arrival of a particle in a state with k particles. 
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Note that in a sweep the processes above are not mutually exclusive, so, for 
example, the simultaneous occurrence of A + and B -  leads to no variation 
in Nk. At each Monte Carlo sweep three independent random variables are 
extracted: a departure state d with probability nd/N, an arrival state a with 
probability 1/N and an acceptance variable 

1 with p r o b e  -/~ 
x =  (A1) 

0 with p r o b l - e  -p 

In terms of these variables the variation in Nk in each process is given by: 

�9 Process A + :  6,,o.k_l[l--~k.l(1--~,,,.l)(~.,.,o] 

�9 Process A- - :  --6,,,.k[ 1 --6,,,.o6,.,O+6k. ~ +6k. 1 6,,,.06.,-.o] 

�9 Process B + :  6,,,~,k+l[1--6,, .o6,.o+6k. o6,,,.o6,..o] 

�9 Process B--:  --6,,o,k[1 --6k. 0(l --6,,,~, l) 6.,- 0] 

The contributions of the different processes can be easily understood; for 
example, in process A + we must have k -  1 particles in the arrival state. 
If k = 1 and 17,/> 1, the move implies an energy cost, and is accepted only 
i f x = l .  

Summing all the contributions and averaging over p, a, and x, we find 

( N k ( t + O t ) - - N k ( t ) )  

= N[Pk(t  + 6t) -- Pk(t)] 

_ dPk(t) 

dt 

= ( k +  1) (Pk+l- -Pk)  + P k - ,  

+Po(e- /J--1)(6k , - - O k . o - - k P k + ( k + l ) P k + l )  (A2) 

Very similar considerations lead to (20) if one restricts the balance 
equation to a subset of the whole space. 

APPENDIX B 

In this appendix we obtain the solution of Eq. (11). We perform the 
change of variables (x, t) -~ (u, t), where 

x - l = e x p  u+ d s ( l + 2 ( s ) )  =e"B(t,O) 
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In terms of the new variables, Eq. (11) reads 

O~t = e"B(t, 0)((~ + 2) (B1) 

where C(u, t) = G(x(u, t), t). This is a linear differential equation, which can 
be readily solved 

~(u, t)= {exp [ e" f~ ds B(s, O)l } F(u) 

+e" ds2(s)B(s,O)exp e" dvB(v,O) (B2) 

where F is an arbitrary function. 
Going back to (x, t) and imposing the initial condition, we get 

Eq. (13). 
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